Saturday, July 30, 2011

ENGG. MATHS-III-TRANSFORMS AND PDE-PRACTICE QUESTIONS FOR Z-TRANSFORMS


                                          ”Z”-TRANSFORMS
Marks:100                                                                                        Time:3hours

                                            PART—A (16marks)                                          
                   ATTEMPT ANY 8 OF THE FOLLOWING:(8*2=16):                      

01.Define a two sided Z-transform. State the applications of it.
02.Find the Z-transform of an
                                              n!

03.Evaluate the Z-transforms of rncosnф and rnsinnф.

04.Define the following functions and derive their Z-transforms:
(a)Unit impulse function
(b)Unit function

05.state and prove the scaling in Z-domain property.

06.Find the Z-transforms of the following functions:
(a)cos3t
(b)sin3nП/6

07.Find the inverse Z-transform of F(z) given by
               F(z) = log(1 divided by (1 – az-1))

08.State and prove the time shifting property of Z-transforms.

09.Derive an expression to find the Z-transform of the derivative of a function
from the Z-transform of the actual function.

10.Find the Z-transform of (n+1)(n+2).

11.Form the difference from the following by eliminating the arbitary constants:
(a) Un=a2n+1
(b) yn=a+b3n
12.Evaluate the Z-transform of { t k}.

                                            PART—B:(84 marks):                                           
    ANSWER ANY 12 FROM THE FOLLOWING QUESTIONS:(12*7=84):   
13.Find the inverse Z-transform of the following using the residue theorem:
                                                            z
                                      (z – 1)(z2 + 1) (7marks)
14.Use the power series method to evaluate inverse Z-transform of the
following:
(a) 10z               (b)         z                           (4+3)marks
(z - 1)(z - 2)           z2 + 7z + 10

15.Solve the following equation using Z-transforms only:
y(n+2) + 6y(n+1) + 9y(n) = 2n provided y0=y1=0. (7marks)

16.By the method of partial fractions find the inverse Z-transform of the
following:
         z(z2- z + 2)                                                               (7marks)
       (z + 1)( z - 1)2

17.State and prove the following theorems: ((2+3+3)marks)
(a)Initial value theorem
(b)Final value theorem
(c)Frequency shifting theorem

18.(a)State and prove the convolution theorem for Z-transforms.
     (b)Using the above concept alone, find the Z-1 of the following:

                             8Z2                (3+4marks)
                      (2z – 1)(4z + 1)

19.Evaluate the Z-transforms of the following: (2+2+3marks)
(a) 3n cosh 2n
(b)(k-1)a(k-1)
(c)    2n+3
    (n+1)(n+2)

20.Find the inverse Z-transform of the following using the residue theorem:
                             z(3z2 - 6z + 4)
                              (z + 2)(z – 1)2             (7marks)

21.Solve the following difference equation using Z transformation method:
x(n+2) - 4x(n+1)+ 3x(n) = 2n.n2 ,x(0)=0 and x(1)=0. (7marks)

22.Find the inverse Z-transform of the following. Ensure that the final answer
is a pre - defined function:
                           4z2 – 2z
                      z3 – 5z2 + 8z – 4             (7marks)

23.Find the Z-transform of f(n)*g(n) if (4+3marks)
(a) f(n)=U(n) and g(n)= δ(n) + (1/2)n U(n).
(b)f(n)=2n u(n) and g(n)=3n u(n).

24.(a)Find the inverse Z-transform of
                      z – 4
               (z – 1)(z - 2)2                   (4+1+2marks)
(b)Find the initial and final value of { f(n) } if
F(z)  =                   0.4 z2
                  (z-1)(z2 – 0.736z +0.136)

25.Find the Z-transform of the following: (2+2+1+2marks)
(a)an and nan
(b)cosnθ and ncosnθ
(c)e-at sinbt
(d)(t+T) e-(t+T)

26.Solve the following difference equation by (4+3marks)
(a)Residue
(b)partial fractions:
y(n) – y(n-1) = u(n) + u(n-1)

27.(a)Discuss the differences between L and Z-transforms. (2+3+2marks)
     (b)Find the inverse Z-transform of
                                       z2 – 3z
                                    (z – 5)(z + 2)
(c)Find the initial value of the following function:
         F(z)   =       zeaT (zeaT – cosbT)
                         z2e2aT – 2zeaTcosbT + 1

NOTE:

1.Apply the conditions in the correct order.

2.Write down all the corresponding formulas.

ALL THE BEST AND BEST OF EFFORTS!!!

set by,
RANGARAJAN T.R.

No comments:

Post a Comment